Research & References

of the Deponte lab

Research: Comparative Biochemistry

The Deponte lab compares enzymes and protein machineries from baker's yeast (Saccharomyces cerevisiae), the kinetoplastid parasite Leishmania tarentolae and the apicomplexan human malaria parasite Plasmodium falciparum. These unicellular organisms are excellent study objects for comparative biochemistry because they belong to three independent eukaryotic lineages and have a completely different lifestyle and biology.

The objective of our organismic triangulation is to decipher:

1) Principles in biochemistry that are common to all eukaryotes

2) Parasite-specific properties and anomalies that could be exploited for intervention


We perform in-depth analyses of enzyme mechanisms and protein structure-function relationships using a variety of methods that range from:

1) Molecular modeling and other bioinformatic analyses in order to develop hypotheses.

2) Purification and in vitro charcaterization of recombinant wild-type and mutant proteins including redox titrations, UV-Vis spectroscopy, CD spectroscopy as well as steady-state and stopped-flow enzyme kinetic measurements and inhibition studies.

3) Heterologous complementation assays, plasmid shuffling and/or SLI and CRISPR-Cas9 genetics in S. cerevisiae, L. tarentolae and/or P. falciparum.

Current projects

The research concept on comparative biochemistry is currently applied to two major topics: thiol-dependent redox metabolism and mitochondrial protein import. 

1) For example, we assess the catalytic mechanisms of peroxiredoxins and glutaredoxins in living cells using redox-sensitive green fluorescent protein (shown above) in collaboration with Bruce Morgan (Saarbrücken), Jan Riemer (Cologne) and Ana Tomás (Porto).

2) The enzyme kinetics and redox properties of diverse wild-type and mutant glutaredoxins, peroxiredoxins, flavoenzymes and the artemisinin-susceptibility factor kelch13 from P. falciparum are also compared in vitro to identify structure-function relationships and mechanistic principles (DFG grants DE 1431/19-1 and DE 1431/20-1 since 2023).

3) Protein-protein interactions of mitochondrial protein import machineries are studied by quantitative mass spectrometry in collaboration with Michael Schroda and Timo Mühlhaus (BioComp since 2022).

4) The relevance of redox processes for parasite development and the mode of action of antimalarial drugs are analyzed in collaboration with Michael Lanzer and the Parasitology Unit in Heidelberg as well as the DFG-funded graduate school RTG 2737 (Stressistance since 2022).

For further information, please have a look at the list of publications and/or contact Marcel Deponte.

List of Publications

ORCID (external summary)


Google scholar (external summary)


Geissel F*, Lang L*, Husemann B, Morgan B, and Deponte M. (2024) Deciphering the mechanism of glutaredoxin-catalyzed roGFP2 redox sensing reveals a ternary complex with glutathione for protein disulfide reduction. Nature Commun. 15:1733.

Zimmermann J, Lang L, Calabrese G, Laporte H, Amponsah PS, Michalk C, Sukmann T, Oestreicher J, Tursch A, Peker E, Owusu TNE, Weith M, Prates Roma L, Deponte M*, Riemer J*, and Morgan B*. (2024) Tsa1 is the dominant peroxide scavenger and a source of H2O2-dependent GSSG production in yeast. bioRxiv doi.10.1101/2024.07.03.601836.

Hieronimus K, Donauer T, Klein J, Hinkel B, Spänle JV, Probst A, Niemeyer J, Kibrom S, Kiefer AM, Schneider L, Husemann B, Bischoff E, Möhring S, Bayer N, Klein D, Engels A, Ziehmer BG, Stieß J, Moroka P, Schroda M*, and Deponte M*. (2024) A modular cloning toolkit for the production of recombinant proteins in Leishmania tarentolae. Microbial Cell 11:128-42.

Castro H, Rocha MI, Duarte M, Vilurbina J, Gomez-Alvez AG, Leao T, Dias F, Morgan B, Deponte M, and Tomás AM. (2024) The cytosolic hyperoxidation-sensitive and -robust Leishmania peroxiredoxins cPRX1 and cPRX2 are both dispensable for parasite infectivity. Redox Biol. 71:103122.

Doumi I, Lang L, Vileno B, Deponte M*, and Faller P*. (2024) Glutathione protects other cellular thiols against oxidation by CuII-Dp44mT. Chem. Eur. J. 30:e202304212.

Bohle F, Rossi J, Tamanna SS, Jansohn H, Schlosser M, Reinhardt F, Brox A, Bethmann S, Kopriva S, Trentmann O, Jahns P, Deponte M, Schwarzländer M, Trost P, Zaffagnini M, Meyer AJ, and Müller-Schüssele SJ. (2024) Chloroplasts lacking class I glutaredoxins are functional but show a delayed recovery of protein cysteinyl redox state after oxidative challenge. Redox Biol. 69:103015.

Bischoff E, Lang L, Zimmermann J, Luczak M, Kiefer AM, Niedner-Schatteburg G, Manolikakes G, Morgan B, and Deponte M. (2023) Glutathione kinetically outcompetes reactions between dimedone and a cyclic sulfenamide or physiological sulfenic acids. Free Radic. Biol. Med. 208:165-77.

Lang L, Wolf AC, Riedel M, Thibol L, Geissel F, Feld K, Zimmermann J, Morgan B, Manolikakes G, and Deponte M. (2023) Substrate promiscuity and hyperoxidation susceptibility as potential driving forces for the co-evolution of Prx5-type and Prx6-type 1-Cys peroxiredoxin mechanisms. ACS Catalysis 13:3627-43.

Haag M, Kehrer J, Sanchez C, Deponte M*, and Lanzer M*. (2022) Physiological jump in erythrocyte redox potential during Plasmodium falciparum development occurs independent of the sickle cell trait. Redox Biol. 58:102536.

Schumann R*, Lang L*, and Deponte M. (2022) Characterization of the glutathione-dependent reduction of the peroxiredoxin 5 homologue PfAOP from Plasmodium falciparum. Protein Sci. 31:e4290.

Deponte M. (2022) Glutathione and glutathione-dependent enzymes. In Redox Chem. Biol. Thiols 241-275.

Schumann R, Bischoff E, Klaus S, Möhring S, Flock J, Keller S, Remans K, Ganter M, and Deponte M. (2021) Protein abundance and folding rather than the redox state of Kelch13 determine the artemisinin susceptibility of Plasmodium falciparum. Redox Biol. 48:102177.

Zimmermann J, Oestreicher J, Geissel F, Deponte M*, and Morgan B*. (2021) An intracellular assay for activity screening and characterization of glutathione-dependent oxidoreductases. Free Radic. Biol. Med. 173:340-9.

Turra GL, Liedgens L, Sommer F, Schneider L, Zimmer D, Vilurbina Perez J, Koncarevic S, Schroda M, Mühlhaus T, and Deponte M. (2021) In vivo structure-function analysis and redox interactomes of Leishmania tarentolae Erv. Microbiol. Spec. e00809-21.

Turra GL, Schneider L, Liedgens L, and Deponte M. (2021) Testing the CRISPR-Cas9 and glmS ribozyme systems in Leishmania tarentolae. Mol. Biochem. Parasitol. 241:111336.

Zimmermann J, Oestreicher J, Hess S, Herrmann JM, Deponte M*, and Morgan B*. (2020) One cysteine is enough: A monothiol Grx can functionally replace all cytosolic Trx and dithiol Grx. Redox Biol. 36:101598.

Liedgens L*, Zimmermann J*, Wäschenbach L*, Geissel F, Laporte H, Gohlke H*, Morgan B*, and Deponte M*. (2020) Quantitative assessment of the determinant structural differences between redox-active and inactive glutaredoxins. Nature Commun. 11:1725.

Calabrese G, Peker E, Amponsah PS, Hoehne MN, Riemer T, Mai M, Bienert GP, Deponte M,  Morgan B, and Riemer J. (2019) Hyperoxidation of mitochondrial peroxiredoxin limits H2O2-induced cell death in yeast. EMBO J. 38:e101552.

Feld K*, Geissel F*, Liedgens L, Schumann R, Specht S, and Deponte M. (2019) Tyrosine substitution of a conserved active site histidine residue activates Plasmodium falciparum peroxiredoxin 6. Protein Sci. 28:100-110.

Roma LP, Deponte M, Riemer J, and Morgan B. (2018) Mechanisms and applications of redox-sensitive GFP-based H2O2 probes. Antioxid. Redox Signal. 29:552-68.

Liedgens L and Deponte M. (2018) The catalytic mechanism of glutaredoxins. In Glutathione 251-261.

Specht S, Liedgens L, Duarte M, Stiegler A, Wirth U, Eberhardt M, Tomás AM, Hell K*, and Deponte M*. (2018) A single-cysteine mutant and chimeras of essential Leishmania Erv can complement the loss of Erv1 but not of Mia40 in yeast. Redox Biol. 15:363-74.

Staudacher V, Trujillo M, Diederichs T, Dick TP, Radi R*, Morgan B*, and Deponte M*. (2018) Redox-sensitive GFP fusions for monitoring the catalytic mechanism and inactivation of peroxiredoxins in living cells. Redox Biol. 14:549-56.

Deponte M. (2017) The incomplete glutathione puzzle: Just guessing at numbers and figures? Antioxid. Redox Signal. 27:1130-61.

Wezena CA, Alisch R, Golzmann A, Liedgens L, Staudacher V, Pradel G, and Deponte M. (2017) The cytosolic glyoxalases of Plasmodium falciparum are dispensable during asexual blood-stage development. Microbial Cell 5:32-41.

Djuika CF*, Staudacher V*, Sanchez CP, Lanzer M, and Deponte M. (2017) Knockout of the peroxiredoxin 5 homologue PFAOP does not affect the artemisinin susceptibility of Plasmodium falciparum. Sci. Rep. 7:4410.

Begas P*, Liedgens L*, Moseler A, Meyer AJ, and Deponte M. (2017) Glutaredoxin catalysis requires two distinct glutathione interaction sites. Nature Commun. 8:14835.

Wezena CA*, Krafczyk J*, Staudacher V, and Deponte M. (2017) Growth inhibitory effects of standard pro- and antioxidants on the human malaria parasite Plasmodium falciparum. Exp. Parasitol.180:64-70.

Wezena CA*, Urscher M*, Vince R, More S, and Deponte M. (2016) Hemolytic and antimalarial effects of tight-binding glyoxalase 1 inhibitors on the host-parasite unit of erythrocytes infected with Plasmodium falciparum. Redox Biol. 8:348-53.

Begas P, Staudacher V, and Deponte M. (2015) Systematic re-evaluation of the bis(2-hydroxyethyl)disulfide (HEDS) assay reveals an alternative mechanism and activity of glutaredoxins. Chem. Science 6:3788-96.

Staudacher V*, Djuika CF*, Koduka J*, Schlossarek S*, Kopp J, Büchler M, Lanzer M, and Deponte M. (2015) Plasmodium falciparum antioxidant protein reveals a novel mechanism for balancing turnover and inactivation of peroxiredoxins. Free Radic. Biol. Med. 85:228-36.

Deponte M and Lillig CH. (2015) Enzymatic control of cysteinyl thiol switches in proteins. Biol. Chem. 396:401-13.

Djuika CF, Huerta-Cepas J, Przyborski JM, Deil S, Sanchez CP, Doerks T, Bork P, Lanzer M, and Deponte M. (2015) Prokaryotic ancestry and gene fusion of a dual localized peroxiredoxin in malaria parasites. Microbial Cell 2:5-13.

Deponte M. (2014) Glyoxalase systems in malaria parasites. Encyclopedia of Malaria DOI: 10.1007/978-1-4614-8757-9_17-1

Deponte M. (2014) Mitochondrial protein import in malaria parasites. Encyclopedia of Malaria DOI: 10.1007/978-1-4614-8757-9_95-5

Deponte M. (2014) Glyoxalase diversity in parasitic protists. Biochem. Soc. Trans. 42:473-478.

Djuika C, Fiedler S, Schnölzer M, Sanchez C, Lanzer M, and Deponte M. (2013) Plasmodium falciparum antioxidant protein as a model enzyme for a special class of glutaredoxin/glutathione-dependent peroxiredoxins. Biochim. Biophys. Acta 1830:4073-90.

Ehrhardt K, Davioud-Charvet E, Ke H, Vaidya A, Lanzer M, and Deponte M. (2013) The antimalarial activities of methylene blue and the 1,4-naphthoquinone 3-[4-(trifluoromethyl)benzyl]-menadione are not due to inhibition of the mitochondrial electron transport chain. Antimicrob. Agents Chemother. 57:2114-20.

Deponte M. (2013) Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochim. Biophys. Acta 1830:3217-66.

Eckers E, Petrungaro C, Groß D, Riemer J, Hell K, and Deponte M. (2013) Divergent molecular evolution of the mitochondrial sulfhydryl:cytochrome c oxidoreductase Erv in opisthokonts and parasitic protists. J. Biol. Chem. 288:2676-88.

Deponte M*, Hoppe HC*, Lee M*, Maier AG*, Richard D*, Rug M*, Spielmann T*, and Przyborski JM*. (2012) Wherever I may roam: Protein and membrane trafficking in P. falciparum-infected red blood cells. Mol. Biochem. Parasitol. 186:95-116.

Eckers E and Deponte M. (2012) No need for labels: The autofluorescence of Leishmania tarentolae mitochondria and the necessity of negative controls. PLOS ONE 7:e47641.

Urscher M, More SS, Alisch R, Vince R, and Deponte M. (2012) Tight-binding inhibitors efficiently inactivate both reaction centers of monomeric Plasmodium falciparum glyoxalase 1. FEBS J. 279:2568-78.

Eckers E, Cyrklaff M, Simpson L, and Deponte M. (2012) Mitochondrial protein import pathways are functionally conserved among eukaryotes despite compositional diversity of the import machineries. Biol. Chem. 393:513-24.

Deponte M. (2012) GFP tagging sheds light on protein translocation: implications for key methods in cell biology. Cell. Mol. Life Sci. 69:1025-33.

Harner M, Neupert W, and Deponte M. (2011) Lateral release of proteins from the TOM complex into the outer membrane of mitochondria. EMBO J. 30:3232-41.

Urscher M, Alisch R, and Deponte M. (2011) The glyoxalase system of malaria parasites- Implications for cell biology and general glyoxalase research. Semin. Cell. Dev. Biol. 22:262-70.

Urscher M, Przyborski JM, Imoto M, and Deponte M. (2010) Distinct subcellular localization in the cytosol and apicoplast, unexpected dimerization, and inhibition of Plasmodium falciparum glyoxalases. Mol. Microbiol. 76:92-103.

Eckers E, Bien M, Stroobant V, Herrmann JM, and Deponte M. (2009) Biochemical characterization of dithiol glutaredoxin 8 from Saccharomyces cerevisiae: The catalytic redox mechanism redux. Biochemistry 48:1410-23.

Sturm N, Jortzik E, Mailu BM, Koncarevic S, Deponte M, Forchhammer K, Rahlfs S, and Becker K. (2009) Identification of proteins targeted by the thioredoxin superfamily in Plasmodium falciparum. PLoS Pathog. 5:e1000383.

Koncarevic S, Rohrbach P, Deponte M, Krohne G, Rahlfs S, and Becker K. (2009) The malarial parasite Plasmodium falciparum imports the human protein peroxiredoxin 2 for peroxide detoxification. PNAS 106:13323-8.

Deponte M and Hell K. (2009) Disulphide bond formation in the intermembrane space of mitochondria. J. Biochem. 146:599-608.

Urscher M and Deponte M. (2009) Plasmodium falciparum glyoxalase II: Theorell-Chance product inhibition patterns, rate-limiting substrate binding via Arg257/Lys260, and unmasking of acid-base catalysis. Biol. Chem. 390:1171-83.

Mesecke N*, Mittler S*, Eckers E*, Herrmann JM, and Deponte M. (2008) Two novel monothiol glutaredoxins from Saccharomyces cerevisiae provide further insights into iron-sulfur cluster binding, oligomerization, and enzymatic activity of glutaredoxins. Biochemistry 47:1452-63.

Mesecke N, Spang A, Deponte M, and Herrmann JM. (2008) A novel group of glutaredoxins in the cis-Golgi critical for oxidative stress resistance. Mol. Biol. Cell 19:2673-80.

Deponte M. (2008) Programmed cell death in protists. Biochim. Biophys. Acta 1783:1396-405.

Deponte M, Sturm N, Mittler S, Harner M, Mack H, and Becker K. (2007) Allosteric coupling of two different functional active sites in monomeric Plasmodium falciparum glyoxalase I. J. Biol. Chem. 282:28419-30.

Deponte M. (2007) In search of Atropos' scissors: severing the life-thread of Plasmodium. In Programmed Cell Death in Protozoa 91-6.

Deponte M, Rahlfs S, Becker K. (2007) Peroxiredoxin systems of protozoal parasites. In Subcellular Biochemistry: Peroxiredoxin Systems 44:219-29

Nickel C, Rahlfs S, Deponte M, Koncarevic S, and Becker K. (2006) Thioredoxin networks in the malarial parasite Plasmodium falciparum.  Antioxid. Redox Signal. 8:1227-39.

Hiller N, Fritz-Wolf K, Deponte M, Wende W, Zimmermann H, and Becker K. (2006) Plasmodium falciparum glutathione S-transferase – structural and mechanistic studies on ligand binding and enzyme inhibition. Protein Science 15:281-9.

Koncarevic S, Deponte M, Fritz-Wolf K, Meyer M, Urig S, Fischer M, Réau R, Davioud-Charvet R, and Becker K. (2005) Mass spectrometric analysis of human glutathione reductase modified by a gold-phosphole inhibitor. In Flavins and Flavoproteins 15:325-30.

Nickel C, Trujillo M, Rahlfs S, Deponte M, Radi R, and Becker K. (2005) Plasmodium falciparum 2-Cys peroxiredoxin reacts with plasmoredoxin and peroxynitrite. Biol. Chem. 386:1129-36.

Deponte M and Becker K. (2005) Glutathione S-transferase from malarial parasites – structural and functional aspects. Methods Enzymol. 401:241-53.

Deponte M, Urig S, Arscott LD, Fritz-Wolf K, Réau R, Herold-Mende C, Koncarevic S, Meyer M, Davioud-Charvet E, Ballou DP, Williams CH, and Becker K. (2005) Mechanistic studies on a novel, highly potent gold-phosphole inhibitor of human glutathione reductase. J. Biol. Chem. 280:20628-37.

Deponte M and Becker K. (2005) Biochemical characterization of Toxoplasma gondii 1-Cys peroxiredoxin 2 with mechanistic similarities to typical 2-Cys Prx. Mol. Biochem. Parasitol. 140:87-96.

Akoachere M, Iozef R, Rahlfs S, Deponte M, Mannervik B, Creighton DJ, Schirmer H, and Becker K. (2005) Characterization of the glyoxalases of the malarial parasite Plasmodium falciparum and comparison with their human counterparts. Biol. Chem. 386:41-52.

Deponte M, Becker K, and Rahlfs S. (2005) Plasmodium falciparum glutaredoxin-like proteins. Biol. Chem. 386:33-40.

Deponte M and Becker K. (2004) Plasmodium falciparum - do killers commit suicide? Trends Parasitol. 20:165-9.

Rahlfs S, Nickel C, Deponte M, Schirmer RH, and Becker K. (2003) Plasmodium falciparum thioredoxins and glutaredoxins as central players in redox metabolism. Redox Rep. 8:246-50.

Deponte M and Becker-Brandenburg K. (2003) Web Site: Malaria: A Parasite Goes Online. Angew. Chem. Int. Ed. Engl. 42:5266.