Research & Publications
of Prof. Dr. C. van Wüllen
Our research area is Quantum Chemistry, that is, the application of quantum mechanics to chemical problems. More specifically, we want to calculate and understand the electronic structure of atoms and molecules, determine molecular structures and (spectroscopic) properties, and explore reaction pathways. Currently, we are focusing on the following subjects:
Development of Relativistic electronic structure methods
Current projects involve the development of two-component relativistic approaches. These approaches account for spin-orbit coupling self-consistently (i.e., from the very beginning of a calculation). Such methods are necessary to describe compounds of the transactinides ("superheavy elements").
Currently, methods to describe electronic excitations and to calculate n.m.r. chemical shifts are under development. These properties are strongly incluenced by spin-orbit coupling also for systems with only moderately heavy elements.
Transition-metal catalyzed organic reactions
In cooperation with the experimental group of J. Christoffers (now in Oldenburg), we are investigating Fe(III) and Cu(II) catalyzed additions of dicarbonyl compounds to acceptor-activated olefins (Michael addition). The current question is how the enantioselectivity in the Cu(II) catalyzed variant becomes effective and which factors influence it.
Electronic structure of transition metal oxide aggregates
At the heart of this project is the electronic structure of vanadium oxide clusters with one ore more vanadium atoms. We are interested in determining the spin symmtery of the ground state of these open-shell compounds, ionization potentials and electron detachment energies of neutral and charged species, the simulation of photoelectron and vibrational spectra, and the reactivity of small vanadium oxide cations towards small alkanes.
Magnetic properties of transition metal complexes
In cooperation with experimental groups, we want to understand magnetic (exchange) coupling iespecially in those cases where the established rules of the thumb are not "good enough". The calculation of magnetic anisotropy (property related to zero-field splitting) is a challenge for large multinuclear complexes with antiferromagnetic coupling.
105. K. Krämer, M. Schmitz, H. Kelm, C. van Wüllen, H.-J. Krüger
Unexpected Reduction of a Coordinated Diazapyridinophane Ligand bound to Chromium(III) Ion Leading to Delocalization of the Unpaired Electron across two Isolated Pyridine Units
Chem. Eur. J. 29, e202301099 (2023)
104. J. Groß, C. van Wüllen
Computational Study on a Transfer Hydrogenation Catalysed by a Ru(II) bis-pyrazolyl pyridine complex
Isr. J. Chem. 63, e202300019 (2023)
103. C. van Wüllen, E. M. V. Kessler
Is [ReCl4(CN)2]2− a good Building Block for Single Molecule Magnets? A Theoretical Investigation.
ChemRxiv. Cambridge: Cambridge Open Engage; 2022. This content is a preprint and has not been peer-reviewed.
doi.org/10.26434/chemrxiv-2022-jwc57
102. M. Tombers, J. Meyer, J. Meyer, A. Lawicki, V. Zamudio-Bayer, K. Hirsch, J. T. Lau, B. von Issendorff, A. Terasaki, T. A. Schlathölter, R. A. Hoekstra, S. Schmidt, A. K. Powell, E. Kessler, M. H. Prosenc, C. van Wüllen, G. Niedner-Schatteburg
Mn12-acetate complexes studied as single molecules
Chem. Eur. J., 28, e202102592 (2022)
doi.org/10.1002/chem.202102592
101. T. Bodenstein, K. Fink, A. Heimermann, C. van Wüllen
Development and application of a complete active space spin-orbit configuration interaction program designed for molecule magnets
ChemPhysChem 23, e202102592 (2022)
doi.org/10.1002/cphc.202100648
100. A. Heimermann, C. van Wüllen
Analyzing Anisotropic Exchange in a Pentanuclear Os2Ni3Complex
Chem. Eur. J. 27, 15148–15158 (2021)
doi.org/10.1002/chem.202101972
99. Sree Ganesh Balasubramani, Guo P. Chen, Sonia Coriani, Michael Diedenhofen, Marius S. Frank, Yannick J. Franzke Filipp Furche, Robin Grotjahn, Michael E. Harding Christof Hättig, Arnim Hellweg, Benjamin Helmich-Paris, Christof Holzer, Uwe Huniar, Martin Kaupp, Alireza Marefat Khah, Sarah Karbalaei Khani, Thomas Müller, Fabian Mack, Brian D. Nguyen, Shane M. Parker, Eva Perlt, Dmitrij Rappoport, Kevin Reiter, Saswata Roy, Matthias Rückert, Gunnar Schmitz, Marek Sierka, Enrico Tapavicza, David P. Tew, Christoph van Wüllen, Vamsee K. Voora, Florian Weigend, Artur Wodyński, Jason M. Yu
TURBOMOLE: Modular program suite for ab initio quantum-chemical and condensedmatter simulations
J. Chem. Phys. 152, 184107 (2020)
98. C. Mehlich, C. van Wüllen
Hyperfine tensors for a model system for the oxygen evolving complex of photosystem II: calculation of the anisotropy shift that occurs beyond the strong exchange limit
Phys. Chem. Chem. Phys. 21, 22902–22909 (2019)
97. C. van Wüllen, J. Lang, G. Niedner-Schatteburg
Reply to the "Comment on "Magnetostructural correlations in isolated trinuclear iron(iii) oxo acetate complexes"' by M. Antkowiak, G. Kamieniarz and W. Florek, Phys. Chem. Chem. Phys., 2018, 20, DOI: 10.1039/C8CP04691C
Phys. Chem. Chem. Phys. 21, 505–506 (2019)
https://doi.org/10.1039/c8cp05926h
96. A. Heimermann, C. van Wüllen
Magnetic Moments of Small Cobalt Clusters Revisited: The Contribution of 3d and 4s Electrons
Int. J. Mass. Spectrom. 438, 135-141 (2019)
https://doi.org/10.1016/j.ijms.2019.01.004
95. C. Mehlich, C. van Wüllen
Broken Symmetry Approach to Magnetic Properties of Oligonuclear Transition Metal Complexes. Application to Hyperfine Tensors of Mixed-Valent Manganese Compounds
J. Phys. Chem. C 123, 7717–7730 (2019)
http://dx.doi.org/10.1021/acs.jpcc.8b05806
94. F. W. Patureau, J. Groß, J. M. Ernsting, C. van Wüllen, J. N. H. Reek
P-N Bridged Dinuclear Rh-METAMORPhos Complexes: NMR and Computational Studies
Eur. J. Inorg. Chem. 2018, 3761–3769 (2018)
http://dx.doi.org/10.1002/ejic.201800397
93. J. Lang, J. M. Hewer, J. Meyer, J. Schuchmann, C. van Wüllen, Niedner-Schatteburg, G
Magnetostructural correlation in isolated trinuclear iron(iii) oxo acetate complexes
Phys. Chem. Chem. Phys. 20, 16673–16685 (2018)
http://dx.doi.org/ 10.1039/c7cp07549a
92. F. Rupp, K. Chevalier, M. Graf, M. Schmitz, H. Kelm, A. Grün, M. Zimmer, M. Gerhards, C. van Wüllen, H.-J. Krüger, R. Diller
Spectroscopic, Structural, and Kinetic Investigation of the Ultrafast Spin Crossover in an Unusual Cobalt(II) Semiquinonate Radical Complex
Chem. Eur. J. 23, 2119 (2017)
http://dx.doi.org/10.1002/chem.201604546
91. C. van Wüllen, K. Schwing, C. Riehn, M. Gerhards
Editorial of the PCCP themed issue on "Physical Chemistry for Life Sciences''
Phys. Chem. Chem. Phys. 19, 10714 (2017)
http://dx.doi.org/10.1039/c7cp90069d
90. B. Helmich-Paris, C. Hättig, C. van Wüllen
Spin-Free CC2 Implementation of Induced Transitions between Singlet Ground and Triplet Excited States
J. Chem. Theor. Comput. 12, 1892 (2016)
http://dx.doi.org/10.1021/acs.jctc.5b01197
Erratum: J. Chem. Theor. Comput. 13, 3426 (2017)
89. J. Meyer, M. Tombers, C. van Wüllen, G. Niedner-Schatteburg, S. Peredkov, W. Eberhardt, M. Neeb, S. Palutke, M. Martins, W. Wurth
The spin and orbital contributions to the total magnetic moments of free Fe, Co, and Ni clusters
J. Chem. Phys. 143, 104302 (2015)
http://dx.doi.org/10.1063/1.4929482
88. M. Kleinschmidt, C. van Wüllen, C. M. Marian
Intersystem-crossing and phosphorescence rates in fac-Ir-III(ppy)(3): A theoretical study involving multi-reference configuration interaction wavefunctions
J. Chem. Phys. 142, 094301 (2015)
http://dx.doi.org/10.1063/1.4913513
87. A. Fromm, C. van Wüllen, D. Hackenberger, L. Gooßen
Mechanism of Cu/Pd-Catalyzed Decarboxylative Cross-Couplings: A DFT Investigation
J. Am. Chem. Soc. 136, 10007 (2014)
http://dx.doi.org/10.1021/ja503295x
86. F. Rupp, K. Chevalier, M. M. N. Wolf, H.-J. Krüger, C. van Wüllen, Y. Nosenko, G. Niedner-Schatteburg, C. Riehn, R. Diller
Photoinduced Processes in Cobalt-Complexes: Condensed Phase and Gas Phase
EPJ Web Conf. 41, 05045 (2013)
http://dx.doi.org/10.1051/epjconf/20134105045
85. E. Kessler, S. Schmitt, C. van Wüllen
Broken symmetry approach to density functional calculation of zero field splittings including anisotropic exchange interactions
J. Chem. Phys. 139, 184110 (2013)
http://dx.doi.org/10.1063/1.4828727
84. P. Jost, C. van Wüllen
Why spin contamination is a major problem in the calculation of spin-spin coupling in triplet biradicals
Phys. Chem. Chem. Phys. 15, 16426–16427 (2013)
http://dx.doi.org/ 10.1039/C3CP52568F
83. K. Muller, Y. Sun, A. Heimermann, F. Menges, G. Niedner-Schatteburg, C. van Wüllen, W. R. Thiel
Structure–Reactivity Relationships in the Hydrogenation of Carbon Dioxide with Ruthenium Complexes Bearing Pyridinylazolato Ligands
Chem. Eur. J. 19, 7825–7834 (2013)
http://dx.doi.org/ 10.1002/chem.201204199
82. C. van Wüllen
Magnetic anisotropy through cooperativity in multinuclear transition metal complexes: theoretical investigation of an anisotropic exchange mechanism
Mol. Phys. 111, 2392–2397 (2013)
http://dx.doi.org/ 10.1080/00268976.2013.796069
81. P. Schwerdtfeger, C. van Wüllen, J. R. Cheeseman
Breakdown of the pseudopotential approximation for magnetizabilities and electric multipole moments. II. The importance of gauge invariance for large-core semi-local pseudopotentials.
J. Chem. Phys. 137, 014107 (2012)
http://dx.doi.org/ 10.1063/1.4731465
80. C. van Wüllen
On the use of effective core potentials in the calculation of magnetic properties, such as magnetizabilites and magnetic shieldings
J. Chem. Phys. 136, 114110 (2012)
http://dx.doi.org/10.1063/1.3694535
79. C. van Wüllen
Negative Energy States in Relativistic Quantum Chemistry
Theor. Chem. Acc. 131, 1082 (2012)
http://dx.doi.org/10.1007/s00214-011-1082-x
78. B. S. Fox-Beyer and C. van Wüllen
Theoretical Modeling of the Adsorption of Thallium and Element 113 atoms on Gold using Two-Component Density Functional Methods with effective core potentials
Chem. Phys. 395, 95–103 (2012)
http://dx.doi.org/10.1016/j.chemphys.2011.04.029
77. S. Schmitt, P. Jost, C. van Wüllen
Zero-field splittings from density functional calculations. Analysis and improvement of known methods
J. Chem. Phys. 134, 194113 (2011)
http://dx.doi.org/10.1063/1.3590362
76. A. Zaitsevskii, A. V. Titov, A. A. Rusakov, C. van Wüllen
Ab initio study of element 113 – gold interactions
Chem. Phys. Lett. 508, 329–331 (2011)
http://dx.doi.org/10.1016/j.cplett.2011.04.062
75. C. van Wüllen
Shared-Memory Parallelization of the TURBOMOLE programs AOFORCE, ESCF and EGRAD: How to quickly parallelize legacy code
J. Comput. Chem. 32, 1195–1201 (2011)
http://dx.doi.org/10.1002/jcc.21692
74. A. Zaitsevskii, C. van Wüllen, A. V. Titov
Adsorption of element 112 on the gold surface: many-body wavefunction versus density functional theory
J. Chem. Phys. 132, 081102 (2010)
http://dx.doi.org/10.1063/1.3336403
73. A. Zaitsevskii, C. van Wüllen, E. A. Rykova, A. V. Titov
Two-component relativistic density functional theory modeling of the adsorption of element 114 (eka-lead) on gold
Phys. Chem. Chem. Phys.12, 4152–4156 (2010)
http://dx.doi.org/10.1039/b923875a
72. C. van Wüllen
A Quasirelativistic Two-component Density Functional and Hartree-Fock Program
Z. Phys. Chem. 224, 413–426 (2010)
http://dx.doi.org/10.1524/zpch.2010.6114
71. A. V. Zaitsevskii, C. van Wüllen, A. V. Titov
Relativistic pseudopotential model for superheavy elements: applications to chemistry of eka-Hg and eka-Pb
Russ. Chem. Rev.78, 1173–1181 (2009)
http://dx.doi.org/10.1070/RC2009v078n12ABEH004075
Uspekhi Khimii78, 1263–1272 (2009) (Russian Version)
70. C. van Wüllen
Broken symmetry approach to density functional calculation of magnetic anisotropy or zero field splittings for multinuclear complexes with antiferromagnetic coupling
J. Phys. Chem. A113, 11535–11540 (2009)
http://dx.doi.org/10.1021/jp902823m
69. C. van Wüllen
Magnetic anisotropy from density functional calculations. Comparison of different approaches: Mn12O12 acetate as a test case
J. Chem. Phys. 130, 194109 (2009)
http://dx.doi.org/10.1063/1.3134430
68. S. Yao, Y. Xiong, C. van Wüllen, M. Driess
From a N-Heterocyclic Silacyclopropene to Donor-Supported Silacyclopropylium Cations
Organometallics 28, 1610–1612 (2009)
http://dx.doi.org/10.1021/om801178g
67. C. van Wüllen
On the eigenfunctions of the Douglas-Kroll operator
Chem. Phys. 356, 199–204 (2009)
http://dx.doi.org/10.1016/j.chemphys.2008.10.018
66. C. van Wüllen, W. Klopper and D. Mukherjee
Electron correlation, molecular properties and relativity – A tribute to Werner Kutzelnigg
Chem. Phys. 356, vii–ix (2009)
http://dx.doi.org/10.1016/j.chemphys.2009.01.011
65. S. Yao, C. van Wüllen, M. Driess
Striking Reactivity of a Ylide-like Germylene toward Terminal Alkynes: [2+4] Cycloaddition versus C-H Bond Activation
Chem. Commun. 2008, 5393–5395
http://dx.doi.org/10.1039/b811952j
64. F. Wang, J. Gauss, C. van Wüllen
Closed-shell coupled-cluster theory with spin-orbit coupling
J. Chem. Phys.129, 064113 (2008)
http://dx.doi.org/10.1063/1.2968136
63. W. Wang, S. Yao, C. van Wüllen, M. Driess
A Cyclopentadienide Analogue Containing Divalent Germanium and a Heavy Cyclobutadiene-Like Dianion with an Unusal Ge4 core
J. Am. Chem. Soc.130, 9640–9641 (2008)
http://dx.doi.org/10.1021/ja802502b
62. M. K. Armbruster, F. Weigend, C. van Wüllen, W. Klopper
Self-consistent Treatment of Spin-Orbit Interactions with Efficient Hartree-Fock and Density Functional Methods
Phys. Chem. Chem. Phys.10, 1748–1756 (2008)
http://dx.doi.org/10.1039/b717719d
61. S. Yao, C. van Wüllen, X.-Y. Sun, M. Driess
Dichotome Reaktivität eines stabilen Silylens gegenüber terminalen Alkinen: C-H-Insertion oder autokatalytische Bildung von Silacycloprop-3-en
Angew. Chem. 120, 3294–3297 (2008)
http://dx.doi.org/10.1002/ange.200704939
Dichotomic Reactivity of a Stable Silylene Toward Terminal Alkynes: Facile CH Bond Insertion Versus Autocatalytic Formation of Silacycloprop-3-ene
Angew. Chem. Int. Ed.47, 3250–3253 (2008)
http://dx.doi.org/10.1002/anie.200704939
60. S. Seidel, K. Seppelt, C. van Wüllen, X. Y. Sun
Das blaue Xe4+ Kation. Experimenteller Nachweis und theoretische Identifizierung
Angew. Chem. 119, 6838-6841 (2007)
http://dx.doi.org/10.1002/ange.200701688
The Blue Xe4+ Cation. Experimental Detection and Theoretical Characterization
Angew. Chem. Int. Ed. 46, 6717–6720 (2007)
http://dx.doi.org/10.1002/anie.200701688
59. S. Yao, M. Brym, C. van Wüllen, M. Driess
From a Stable Silylene to an Isolable Silaformamide-Borane Complex with Considerable Silicon-Oxygen Double Bond Character
Angew. Chem.119, 4237–4240 (2007)
http://dx.doi.org/10.1002/ange.200700398
Angew. Chem. Int. Ed. 46, 4159–4162 (2007)
http://dx.doi.org/10.1002/anie.200700398
58. M. Pykavy and C. van Wüllen
A systematic quantum chemical investigation of the C–H bond
activation in methane by gas phase vanadium oxide cation VO+
J. Comput. Chem. 28, 2252–2259 (2007)
http://dx.doi.org/10.1002/jcc.20584
57. C. van Wüllen and N. Langermann
Gradients for Two-Component Quasirelativistic Methods. Application to dihalogenides of element 116.
J. Chem. Phys. 126, 114106 (2007)
http://dx.doi.org/10.1063/1.2711197
56. M. Driess, S. Yao, M. Brym, C. van Wüllen
Low-Valent Silicon Cations With Two-Coordinate Silicon and Aromatic Character
Angew. Chem.118, 6882–6885 (2006)
http://dx.doi.org/10.1002/anie.200602327
Angew. Chem. Int. Ed.45, 6730–6733 (2006)
http://dx.doi.org/10.1002/anie.200602327
55. J. Borowka and C. van Wüllen
Computational studies on the enantioselective Copper(II) catalyzed Michael reaction
J. Organomet. Chem.691, 4474–4479 (2006)
http://dx.doi.org/10.1016/j.jorganchem.2006.01.067
54. M. Driess, S. Yao, M. Brym, C. van Wüllen, D. Lentz
A New Type of N-Heterocyclic Silylene with Ambivalent Reactivity
J. Am. Chem. Soc.128, 9628–9629 (2006)
http://dx.doi.org/10.1021/ja062928i
53. M. Driess, S. L. Yao, M. Brym, C. van Wüllen
Ein Heterofulven-analoges Germylen mit Betain-Reaktivität
Angew. Chem.118, 4455–4458 (2006)
http://dx.doi.org/10.1002/ange.200600237
A Heterofulvene-Like Germylene with a Beatin-Reactivity
Angew. Chem. Int. Ed. 45, 4349–4352 (2006)
http://dx.doi.org/10.1002/anie.200600237
52. P. Escarpa Gaede and C. van Wüllen
Ligand Bridged Heterodinuclear Transition Metal Complexes – Syntheses, Structures and Electrochemical Investigations
Z. Allg. Anorg. Chem. 632, 541–552 (2006)
http://dx.doi.org/10.1002/zaac.200500229
51. A. V. Mitin and C. van Wüllen
Two-component relativistic density functional calculations of the dimers of the halogens from bromine through element 117 using effective core potential and all-electron methods
J. Chem. Phys. 124, 064305 (2006)
http://dx.doi.org/10.1063/1.2165175
50. C. van Wüllen
Numerical Instabilities in the Computation of Pseudopotential Matrix Elements
J. Comput. Chem, 27, 135–141 (2006)
http://dx.doi.org/10.1002/jcc.20325
49. C. van Wüllen
Buchrezension: W. Demtröder: “Molecular Physics: Theoretical Principles and Experimental Methods”
Angew. Chem.118, 5863–5864 (2006)
https://doi.org/10.1002/ange.200585402
Book review: W. Demtröder: “Molecular Physics: Theoretical Principles and Experimental Methods”
Angew. Chem. Int. Ed.45, 5733–5734 (2006)
https://doi.org/10.1002/anie.200585402
48. C. van Wüllen and C. Michauk
Accurate and Efficient Treatment of Two-Electron Contributions in Quasirelativistic high-order Douglas-Kroll Density Functional Calculations
J. Chem. Phys.123, 204113 (2005)
http://dx.doi.org/10.1063/1.2133731
47. D. Schröder, C. van Wüllen, H. Schwarz, T. Klapötke
Stabilität von gasförmigem Thalliummonofluorid: TlF0, TlF+ und TlF2+
Angew. Chem.117, 4326–4330 (2005)
http://dx.doi.org/10.1002/ange.200461334
Stability of Gaseous Thallium Monofluoride as TlF0, TlF+, and TlF2+
Angew. Chem. Int. Ed.44, 4254–4257 (2005)
http://dx.doi.org/10.1002/anie.200461334
46. R. Berger, N. Langermann, C. van Wüllen
Zeroth order regular approximation approach to molecular parity violation
Phys. Rev. A71, 042105 (2005)
http://dx.doi.org/10.1103/PhysRevA.71.042105
45. R. Berger and C. van Wüllen
Density functional calculations of molecular parity violating effects within the zeroth order regular approximation
J. Chem. Phys. 122, 134316 (2005)
http://dx.doi.org/10.1063/1.1869467
44. C. van Wüllen
Sixth-order Douglas-Kroll: Two-component reference data for one-electron ions from 1s1/2 to 4f7/2
Chem. Phys.311, 105–112 (2005)
http://dx.doi.org/10.1016/j.chemphys.2004.10.010
43. M. Dolg and C. van Wüllen
Relativistic effects in heavy-element chemistry and physics - in memoriam Bernd A. Heß (1954–2004)
Chem. Phys. 311, 1–2 (2005)
http://dx.doi.org/10.1016/j.chemphys.2004.11.003
42. D. Ambrosek, C. A. Chatzidimitriou-Dreismann, P. Krause, J. Manz, H. Naumann, C. van Wüllen
Attosecond dynamics of nuclear wavepackets induced by neutron Compton scattering
Chem. Phys.302, 229-241 (2004)
http://dx.doi.org/10.1016/j.chemphys.2004.03.019
41. C. van Wüllen
Relation between different variants of the generalized Douglas-Kroll transformation through sixth order
J. Chem. Phys. 120, 7307-7313 (2004)
http://dx.doi.org/10.1063/1.1687676
40. M. Pykavy, C. van Wüllen, J. Sauer
Electronic ground states of the V2O4+/0/- species from multireference correlation and density functional studies
J. Chem. Phys.120, 4207-4215 (2004)
http://dx.doi.org/10.1063/1.1643891
39. S. Pelzer, T. Kauf, C. van Wüllen, J. Christoffers
Catalysis of the Michael Reaction by Iron(III): Calculations, Mechanistic Insights and Experimental Consequences
J. Organometallic Chem.684, 308-314 (2003)
http://dx.doi.org/10.1016/S0022-328X(03)00765-4
38. M. Pykavy and C. van Wüllen
Multireference Correlation Calculations for the Ground States of VO+/0/- Using Correlation Consistent Basis Sets
J. Phys. Chem. A107, 5566-5572 (2003)
http://dx.doi.org/10.1021/jp027264n
37. C. van Wüllen
Buchrezension: “Handbook of Molecular Physics and Quantum Chemistry”. Band 1-3. Herausgegeben von Stephen Wilson, Peter F. Bernath und Roy McWeeny.
Angew. Chem.115, 5843 (2003)
https://doi.org/10.1002/ange.200385046
Book review: “Handbook of Molecular Physics and Quantum Chemistry”. Vols. 1-3. Edited by Stephen Wilson, Peter F. Bernath, and Roy McWeeny.
Angew. Chem. Int. Ed.42, 5667 (2003)
https://doi.org/10.1002/anie.200385046
36. C. van Wüllen
Web-Site: Spielerei verdeckt Nützliches
Angew. Chem. 115, 2156 (2003)
https://doi.org/10.1002/ange.200390479
web site: A playground with hidden treasures
Angew. Chem. Int. Ed.42, 2110 (2003)
http://dx.doi.org/10.1002/anie.200390453
35. H. Ackermann, J. Aust, M. Driess, K. Merz, C. Monsé, C. van Wüllen
How to tame planar and main group metal-substituted onium ions of phosphorus and arsenic
Phosphorus Sulf. Silic. Relat. Elem.177, 1613-1616 (2002)
http://dx.doi.org/10.1080/10426500290092776
34. C. van Wüllen
Spin Densities in Two-Component Relativistic Density Functional Calculations: Non-Collinear vs. Collinear Approach
J. Comput. Chem.23, 779-785 (2002)
http://dx.doi.org/10.1002/jcc.10043
33. W. Liu, C. van Wüllen, F. Wang, L. Li
Spectroscopic constants of MH and M2 (M = Tl, E113, Bi, E115): direct comparisons of four- and two-component approaches in the framework of relativistic density functional theory
J. Chem. Phys. 116, 3626-3634 (2002)
http://dx.doi.org/10.1063/1.1446026
32. M. Drieß, H. Ackermann, J. Aust, K. Merz, C. van Wüllen
As[P(NMe2)3]2 als simultane AsI und PI Quelle: Synthese und Dichtefunktionalrechnungen planar-tetrakoordinierter Arsonium- und Phosphoniumionen
Angew. Chem.114, 467-470 (2002)
http://dx.doi.org/10.1002/1521-3757(20020201)114:33.0.CO;2-6
As[P(NMe2)3]2 as Simultaneous AsI and PI Source: Synthesis and Density Function Calculations of Planar Tetracoordinate Arsonium and Phosphonium Ions
Angew. Chem. Int. Ed.41, 450-453 (2002)
http://dx.doi.org/10.1002/1521-3773(20020201)41:33.0.CO;2-N
31. W. Liu, C. van Wüllen, Y. K. Han, Y. J. Choi, Y. S. Lee
Spectroscopic constants of Pb and Eka-lead compounds: Comparison of different approaches
Adv. in Quantum Chem.39, 325-355 (2001)
http://dx.doi.org/10.1016/S0065-3276(05)39019-8
30. C. van Wüllen
Trendbericht Theoretische Chemie: Quantenchemie mit hoher Genauigkeit
Nachr. Chem. 49, 337-340 (2001)
http://dx.doi.org/ 10.1002/nadc.20010490310
29. M. Driess, C. Monsé, K. Merz, C. van Wüllen
Perstannylierte Ammonium- und Phosphoniumionen: metallorganische Onium- und gleichzeitig basenstabilisierte Stannyliumionen
Angew. Chem.112, 3838-3840 (2000)
http://dx.doi.org/10.1002/1521-3757(20001016)112:203.0.CO;2-G
Perstannylated Ammonium and Phosphonium Ions: Organometallic Onium Ions That Are also Base-Stabilized Stannylium Ions
Angew. Chem. Int. Ed.39, 3684-3686 (2000)
http://dx.doi.org/10.1002/1521-3773(20001016)39:203.0.CO;2-U
28. W. Liu and C. van Wüllen
Comment on "Four-component relativistic density functional calculations of heavy diatomic molecules" [J. Chem. Phys. 112, 3499 (2000)]
J. Chem. Phys.113, 2506-2507 (2000)
http://dx.doi.org/10.1063/1.482070
27. C. van Wüllen
A Comparison of Density Functional Methods for the Calculation of Phosphorus-31 NMR Chemical Shifts
Phys. Chem. Chem. Phys.2, 2137-2144 (2000)
http://dx.doi.org/10.1039/B000461H
26. W. Liu, W. Kutzelnigg, C. van Wüllen
Relativistic MCSCF by means of direct perturbation theory. II. Implementation and applications
J. Chem. Phys.112, 3559-3571 (2000)
http://dx.doi.org/10.1063/1.480510
25. C. van Wüllen
Book review: A. J. Stone, “The Theory of Intermolecular Forces”
Z. Physik. Chem.214, 113 (2000)
24. M. Drieß, J. Aust, K. Merz, C. van Wüllen
van’t-Hoff-Le-Bel-Fremdling: Bildung eines Phosphoniumkations mit einem planar-tetrakoordinierten Phosphoratom
Angew. Chem. 111, 3967-3969 (1999)
http://dx.doi.org/10.1002/(SICI)1521-3757(19991216)111:243.0.CO;2-F
van’t Hoff - Le Bel Stranger: Formation of Phosphonium Cations With a Planar Tetracoordinate Phosphorous Atom
Angew. Chem. Int. Ed. 38, 3677-3680 (1999)
http://dx.doi.org/10.1002/(SICI)1521-3773(19991216)38:243.0.CO;2-6
23. W. Liu and C. van Wüllen
Spectroscopic Constants of Gold and Eka-Gold (Element 111) Diatomic Compounds. The Importance of Spin-Orbit Coupling.
J. Chem. Phys.110, 3730-3735 (1999)
http://dx.doi.org/10.1063/1.478237
Erratum: J. Chem. Phys.113, 891 (2000)
http://dx.doi.org/10.1063/1.481866
22. C. van Wüllen
Relativistic All-Electron Density Functional Calculations
J. Comput. Chem.20, 51-62 (1999)
http://dx.doi.org/10.1002/(SICI)1096-987X(19980115)19:13.0.CO;2-Y
21. D. A. Herebian, C. S. Schmidt, W. S. Sheldrick, C. van Wüllen
eta(5)-Pentamethylcyclopentadienyliridium(III) and -rhodium(III) Labeling of Amino Acids with Aromatic Side-Chains. The Importance of Relativistic Effects for the Stability of Cp*Ir-III Sandwich Complexes
Eur. J. Inorg. Chem.1998, 1991-1998
http://dx.doi.org/10.1002/(SICI)1099-0682(199812)1998:123.0.CO;2-3
20. R. Franke and C. van Wüllen
First-order relativistic corrections to the MP2 energy from standard gradient codes. Comparison with results from density functional theory.
J. Comput. Chem..19, 1596-1603 (1998)
http://dx.doi.org/10.1002/(SICI)1096-987X(19981115)19:143.0.CO;2-E
19. C. van Wüllen
Molecular density functional calculations in the regular relativistic approximation. Method, application to coinage metal diatomics, hydrides, fluorides and chlorides, and comparison with first-order relativistic calculations.
J. Chem. Phys.109, 392-399 (1998)
http://dx.doi.org/10.1063/1.476576
18. C. van Wüllen
Molecular Structure and Binding Energies of Monosubstituted Hexacarbonyls of Chromium, Molybdenum, and Tungsten: Relativistic density functional study.
J. Comput. Chem.18, 1985-1992 (1997)
http://dx.doi.org/10.1002/(SICI)1096-987X(199712)18:163.0.CO;2-I
17. M. Kaupp, C. van Wüllen, R. Franke, F. Schmitz, W. Kutzelnigg
The Structure of XeF6 and of Compounds Isoelectronic with It. A Challenge to Computational Chemistry and to the Qualitative Theory of the Chemical Bond.
J. Am. Chem. Soc.118, 11939-11950 (1996)
http://dx.doi.org/10.1021/ja9621556
16. C. van Wüllen
A relativistic Kohn-Sham density functional procedure by means of direct perturbation theory II. Application to the molecular structure and bond dissociation energies of transition metal carbonyls and related complexes
J. Chem. Phys.105, 5485-5493 (1996)
http://dx.doi.org/10.1063/1.472389
15. C. van Wüllen
On the use of common effective core potentials in density functional calculations.
I. Test calculations on transition metal carbonyls
Int. J. Quantum Chem.58, 147-152 (1996)
http://dx.doi.org/10.1002/(SICI)1097-461X(1996)58:23.0.CO;2-Y
14. C. van Wüllen and W. Kutzelnigg
Calculation of nuclear magnetic resonance shieldings and magnetic susceptibilities using Multiconfiguration Hartree-Fock wave functions and local gauge origins
J. Chem. Phys.104, 2330-2340 (1996)
http://dx.doi.org/10.1063/1.470928
13. C. van Wüllen
Response to: “Comment on: Density functional calculation of nuclear magnetic resonance chemical shifts [J. Chem. Phys. 1996, 104, 1163]”
J. Chem. Phys.104, 1165-1165 (1996)
http://dx.doi.org/10.1063/1.470775
12. M. Bühl and C. van Wüllen
Computational evidence for a new C84 isomer
Chem. Phys. Lett. 247, 63-68 (1995)
http://dx.doi.org/10.1016/0009-2614(95)01193-6
11. C. van Wüllen
A hybrid method for the evaluation of the matrix elements of the Coulomb potential
Chem. Phys. Lett.245, 648-652 (1995)
http://dx.doi.org/10.1016/0009-2614(95)01062-E
10. C. van Wüllen
A relativistic Kohn-Sham procedure by means of direct perturbation theory
J. Chem. Phys.103, 3589-3599 (1995)
http://dx.doi.org/10.1063/1.470242
9. A. Freitag, C. van Wüllen, V. Staemmler
An ab initio Study of the Chemical Bond and the 129Xe NMR Chemical Shift in M+-Xe Compounds, M = Li, Na, K, Cu, Ag
Chem. Phys.192, 267-280 (1995)
http://dx.doi.org/10.1016/0301-0104(94)00399-U
8. C. van Wüllen
Density functional calculation of nuclear magnetic resonance chemical shifts
J. Chem. Phys.102, 2806-2811 (1995)
http://dx.doi.org/10.1063/1.468657
7. U. Fleischer, C. van Wüllen, W. Kutzelnigg
IGLO calculations of NMR chemical shifts in some silicon an phosphorus containing polycycles
Phosphorus Sulf. Silic. Relat. Elem. 93, 365-366 (1994)
http://dx.doi.org/10.1080/10426509408021859
6. C. van Wüllen, U. Fleischer, W. Kutzelnigg
Comment on ‘Theoretical calculations of the nuclear magnetic shielding tensors for the ethylenic carbon atoms in cyclopropenes’
Mol. Phys.81, 1373-1382 (1994)
http://dx.doi.org/10.1080/00268979400100931
5. C. van Wüllen
An Implementation of a Kohn-Sham density functional program using a Gaussian-type basis set. Application to the equilibrium geometries of C60 and C70.
Chem. Phys. Lett.219, 8-14 (1994)
dx.doi.org/10.1016/0009-2614(94)00062-X
4. C. van Wüllen
Magnetic properties of the BH molecule
Theoret. Chimica Acta87, 89-95 (1993)
3. C. van Wüllen and W. Kutzelnigg
The MC-IGLO method
Chem. Phys. Lett.205, 563-571 (1993)
dx.doi.org/10.1016/0009-2614(93)80013-F
2. U. Meier, C. van Wüllen, M. Schindler
Ab initio Calculation of Magnetic Properties by the “Direct” IGLO Method
J. Comput. Chem.13, 551-559 (1992)
dx.doi.org/10.1002/jcc.540130503
1. M. Klessinger, T. Pötter, C. van Wüllen
Semiempirical valence-electron calculations of excited state geometries and vibrational frequencies
Theoret. Chim. Acta80, 1-17 (1991)